
Type Checking

Prof. James L. Frankel
Harvard University

Version of 5:03 PM 26-Sep-2023
Copyright © 2023, 2022, 2020, 2018, 2016, 2015 James L. Frankel. All rights reserved.

C Types
C Types Type Category Type Category Type Category

short, int, long, long long (signed and
unsigned)

Integral type Arithmetic type Scalar type

char (signed and unsigned) Integral type Arithmetic type Scalar type

_Bool Integral type Arithmetic type Scalar type

enum {…} Integral type Arithmetic type Scalar type

float, double, long double Floating-point type Arithmetic type Scalar type

float _Complex, double _Complex, long
double _Complex, float _Imaginary, double
_Imaginary, long double _Imaginary

Floating-point type Arithmetic type Scalar type

T * Pointer type Pointer type Scalar type

T […] Array type Array type Aggregate type

struct {…} Structure type Structure type Aggregate type

union {…} Union type Union type Union type

T (…) Function type Function type Function type

void Void type Void type Void type 2

Arithmetic Identifier Representation

Arithmetic
type

Identifier
in Symbol

Table

Type field

3

Pointer Identifier Representation

Pointer
to

Identifier
in Symbol

Table

Base
type

Type field

Base type field

4

Pointer Type Representation

Pointer
to

Base
type

Base type field

5

Pointer Type Details

• Pointers can point to any type

• Pointers are either an:

– Object pointer

– Function pointer

– Void pointer

• void * is a generic pointer

• Generic pointers cannot be dereferenced

• NULL pointer is equal to the integer constant 0

6

Array Type Representation

Array
of

Base
type

Base type field

Number
of

elements

Number of elements field

7

Array Type Details

• Arrays can be formed of any type except:
– void

– any incomplete type

– a function type

• Arrays always have a 0-origin

• When an “array of T” appears in an expression, it is converted
to type “pointer to T” and its value is a pointer to the first
element except when the array is an operand of the sizeof or
address-of (&) operator

8

Multidimensional Array Type Details

• Multidimensional arrays are stored in row-major order (i.e.,
adjacent elements in memory differ by one in their last
subscript)

• Conversion of array to pointer happens for multidimensional
arrays as for singly dimensioned arrays, but only for the top-
level array-ness

• So, an expression A of type “i-by-j-by-…-by-k array of T” is
converted to type “pointer to j-by-…-by-k array of T”

9

enum Types

• An enumeration type consists of integer values represented by
identifiers that are referred to as enumeration constants

• Each enumeration type is referred to by its tag identifier

• Enumeration constants have type int

• Example:

– enum boats { power, sail, dinghy } boat1, boat2;

10

Structure Types (1 of 2)

• Example:
– struct node {

 int value;
 struct node *next;
} myNode;

• “node” is the structure’s tag identifier

• “value” and “next” are components (or members or fields)

• The “struct node” is an incomplete type from just after its
appearance until the end of the complete declaration

11

Structure Types (2 of 2)

• structs may contain holes in their storage allocation
• components are laid out in the order in which they are declared
• bit fields may be specified for components in structs, as in:

– struct DiskReg {
 unsigned int ready:1;
 unsigned int errorOccured:1;
 unsigned int diskSpinning:1;
 unsigned int writeProtect:1;
 unsigned int headLoaded:1;
 unsigned int errorCode:8;
 unsigned int track:9;
 unsigned int sector:5;
 unsigned int command:5;
};

– manner in which bit fields are packed into a struct is implementation-defined, but predictable for
each implementation (usually from LSB to MSB)

12

Union Types

• Example:
– union overlay {

 int i;
 float f;
 char c[4];
} myOverlay;

• Storage is allocated for each component starting at the beginning of the union
• Storage is allocated for the union at an appropriate alignment for any

component in the union
• Unions are used to support “variant records”
• Unions can be used in a non-portable way to discover the underlying

representation of data

13

Function Types

• Functions cannot return arrays or functions (but can return
pointers to arrays or functions)

• The name of a function (i.e., an expression of type “function
returning …”) when used in an expression is converted into a
“pointer to function returning …” except when used as a
function call or as the operand of address (&) or sizeof

14

Minimum Integer Precision and Range
(§5.1.1, p. 125 & Table 5-2, p. 127)

• char – at least 8 bits
• short – at least 16 bits
• int – at least 16 bits
• long – at least 32 bits
• long long – at least 64 bits

• Concerning integer type range: Do not depend on the
implementation using twos-complement representation
– See §5.1.1, p. 125-126 & Table 5-2, p. 127)
– For example, -32,768 may not be representable in 16 bits

15

Integral & Floating-Point Number Representations

• Detour to the Numeric Encodings slides

16

Character Representations

• Detour to the Character Encodings slides

17

Some Additional Type Names

• Complex types

– float _Complex

– double _Complex

– long double _Complex

– float _Imaginary

– double _Imaginary

– long double _Imaginary

• Non-Complex Arithmetic types are also called real types

18

Usual Conversions: Casting
Destination (cast) type Permitted source types

Any arithmetic type Any arithmetic type

Any integer type Any pointer type

Pointer to (object) T, or
(void *)

Any integer type,
(void *),
pointer to (object) Q, for any Q;
pointer to (function) Q, for any Q

Pointer to (function) T Any integer type,
pointer to (function) Q, for any Q;
pointer to (object) Q, for any Q

Structure or union None; not a permitted cast

Array of T, or
Function returning T

None; not a permitted cast

void Any type

19

Usual Conversions: Assignment
Left side type Permitted right side types

Any arithmetic type Any arithmetic type

_Bool Any pointer type

A structure or union
type

A compatible structure or union
type

(void *) The constant 0,
pointer to (object) T,
(void *)

Pointer to (object) T1 The constant 0,
pointer to T2, where T1 and T2 are
compatible,
(void *)

Pointer to (function) F1 The constant 0,
pointer to F2, where F1 and F2 are
compatible

20

Conversion Rank
Rank Types of that rank

60 long long int,
unsigned long long int

50 long int,
unsigned long int

40 int,
unsigned int

30 short,
unsigned short

20 char,
unsigned char,
signed char

10 _Bool

21

Usual Unary Conversions (Choose first that applies)

Operand type Standard C converts it to

float (no conversion)

Array of T Pointer to T

Function returning T Pointer to function returning T

An integer of rank greater or equal
to int

(no conversion)

A signed type of rank less than int int

An unsigned type of rank less than
int, all of whose values can be
represented in type int

int

An unsigned type of rank less than
int, all of whose values cannot be
represented in type int

unsigned int

22

Usual Binary Conversions (Choose first that applies)

If either operand type Other operand type Standard C converts both
to

long double any real type long double

double any real type double

float any real type float

any unsigned type any unsigned type The unsigned type with the
greater rank

any signed type any signed type The signed type with the greater
rank

any unsigned type a signed type of less or equal rank The unsigned type

any unsigned type a signed type of greater rank that
can represent all values of the
unsigned type

The signed type

any unsigned type a signed type of greater rank that
cannot represent all values of the
unsigned type

The unsigned version of the
signed type

any other type any other type (no conversion)

23

Examples of Types and Conversions

• Names – Identifiers (§7.3.1, p. 208)

• Literals (§7.3.2, p. 209)

• Unary minus and plus (§7.5.3, p. 222)

• Assignment expressions (§7.9, p. 246)
– Simple assignment (§7.9.1, p. 247-248)

– Compound assignment (§7.9.2, p. 248-249)

• Additive operators (§7.6.2, p. 229-231)

• Logical operator expressions (§7.7, p. 242-244)

24

	Slide 1: Type Checking
	Slide 2: C Types
	Slide 3: Arithmetic Identifier Representation
	Slide 4: Pointer Identifier Representation
	Slide 5: Pointer Type Representation
	Slide 6: Pointer Type Details
	Slide 7: Array Type Representation
	Slide 8: Array Type Details
	Slide 9: Multidimensional Array Type Details
	Slide 10: enum Types
	Slide 11: Structure Types (1 of 2)
	Slide 12: Structure Types (2 of 2)
	Slide 13: Union Types
	Slide 14: Function Types
	Slide 15: Minimum Integer Precision and Range (§5.1.1, p. 125 & Table 5-2, p. 127)
	Slide 16: Integral & Floating-Point Number Representations
	Slide 17: Character Representations
	Slide 18: Some Additional Type Names
	Slide 19: Usual Conversions: Casting
	Slide 20: Usual Conversions: Assignment
	Slide 21: Conversion Rank
	Slide 22: Usual Unary Conversions (Choose first that applies)
	Slide 23: Usual Binary Conversions (Choose first that applies)
	Slide 24: Examples of Types and Conversions

